Experimental Investigation and Discussion on the Mechanical Endurance Limit of Nafion Membrane Used in Proton Exchange Membrane Fuel Cell †

نویسنده

  • Enrico Sciubba
چکیده

As a solution of high efficiency and clean energy, fuel cell technologies, especially proton exchange membrane fuel cell (PEMFC), have caught extensive attention. However, after decades of development, the performances of PEMFCs are far from achieving the target from the Department of Energy (DOE). Thus, further understanding of the degradation mechanism is needed to overcome this obstacle. Due to the importance of proton exchange membrane in a PEMFC, the degradation of the membrane, such as hygrothermal aging effect on its properties, are particularly necessary. In this work, a thick membrane (Nafion N117), which is always used as an ionic polymer for the PEMFCs, has been analyzed. Experimental investigation is performed for understanding the mechanical endurance of the bare membranes under different loading conditions. Tensile tests are conducted to compare the mechanical property evolution of two kinds of bare-membrane specimens including the dog-bone and the deeply double edge notched (DDEN) types. Both dog-bone and DDEN specimens were subjected to a series of degradation tests with OPEN ACCESS Energies 2014, 7 6402 different cycling times and wide humidity ranges. The tensile tests are repeated for both kinds of specimens to assess the strain-stress relations. Furthermore, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and Scanning electron microscope (SEM) observation and water absorption measurement were conducted to speculate the cause of this variation. The initial cracks along with the increasing of bound water content were speculated as the primary cause.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Studies on the SPEEK membrane with low degree of sulfonation as a stable proton exchange membrane for fuel cell applications

Sulfonated poly (ether ether ketone) (SPEEK) with a low degree of sulfonation (DS = 40%) was prepared for proton exchange membrane fuel cells (PEMFC). Poly (ether ether ketone) (PEEK) was sulfonated in concentrated H2SO4 under N2 atmosphere and characterized by the hydrogen nuclear magnetic resonance (H-NMR) technique. After preparation of the SPEEK polymer, the obtained polymer was dissolved i...

متن کامل

Dynamic investigation of hydrocarbon proton exchange membrane Fuel Cell

Sulfonated polyether ether ketone (SPEEK) is categorized in a nonfluorinated aromatic hydrocarbon proton exchange membrane (PEM) group and considered as a suitable substitute for common per-fluorinated membranes, such as Nafion, due to wider operating temperature, less feed gas crossover, and lower cost. Since modeling results in a better understanding of a phenomenon, in this study a dynamic o...

متن کامل

An overview of organic/inorganic membranes based on sulfonated poly ether ether ketone for application in proton exchange membrane fuel cells

Nowadays, proton exchange membrane fuel cells (PEMFCs) are the most promising green energy conversion devices for portable and stationary applications. Traditionally, these devices were based onperfluoro-sulfonic acid electrolytes membranes, given the commercial name Nafion. Nafion is the mostused electrolyte membrane till now; because of its high electrochemical properties su...

متن کامل

Modified CNTs/Nafion composite: The role of sulfonate groups on the performance of prepared proton exchange methanol fuel cell’s membrane

A novel Nafion®-based nanocomposite membrane was synthesized to be applied as direct methanol fuel cells (DMFCs). Carbon nanotubes (CNTs) were coated with a layer of silica and then reacted by chlorosulfonic acid to produce sulfonate-functionalized silicon dioxide coated carbon nanotubes (CNT@SiO2-SO3H). The functionalized CNTs were then introduced to Nafion®, and subsequently, methanol permeab...

متن کامل

Numerical Investigation of the Effect of Gas Diffusion Layer with Semicircular Prominences on Polymer Exchange Membrane Fuel Cell Performance and Species Distribution

A three-dimensional computational fluid dynamics model of a proton exchange membrane fuel cell (PEMFC) with both gas distribution flow channels and Membrane Electrode Assembly (MEA) is developed. A set of conservation equation is numerically solved by developing a CFD code based on the finite volume technique and SIMPLE algorithm. In this research, some parameters like oxygen consumption, water...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014